25fbc56b910b394c02f0c2673630f602899ddc56,examples/mnist/conv_mnist.py,,,#,11
Before Change
// Run the network on the input.
choice = np.random.choice(per_class, size=10, replace=False)
clamp = {"Y" : per_class * labels[i].long() + torch.Tensor(choice).long()}
network.run(inpts=inpts, time=time)
// Optionally plot various simulation information.
After Change
// conv_layer,
// w=w)
w = torch.zeros(1, n_filters, conv_size, conv_size, 1, n_filters, conv_size, conv_size)
for fltr1 in range(n_filters):
for fltr2 in range(n_filters):
if fltr1 != fltr2:
for i in range(conv_size):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: BindsNET/bindsnet
Commit Name: 25fbc56b910b394c02f0c2673630f602899ddc56
Time: 2018-05-25
Author: djsaunde@cs.umass.edu
File Name: examples/mnist/conv_mnist.py
Class Name:
Method Name:
Project Name: mozilla/TTS
Commit Name: f038b1aa3fd670b406d7ad6898a613e4870c6c60
Time: 2019-07-21
Author: egolge@mozilla.com
File Name: layers/tacotron.py
Class Name: Decoder
Method Name: _init_states
Project Name: rusty1s/pytorch_geometric
Commit Name: b6a7c304c68fe4a1300970459a3807ee7bce6c87
Time: 2018-05-22
Author: matthias.fey@tu-dortmund.de
File Name: examples/cora.py
Class Name:
Method Name: