2526879b1f941c887eeb24a267b5ea010e20d5d7,PyNomaly/loop.py,LocalOutlierProbability,_ssd,#LocalOutlierProbability#Any#,137

Before Change


        for cluster_id in self.cluster_labels_u:
            indices = np.where(data_store[:, 0] == cluster_id)
            cluster_distances = np.take(data_store[:, 1], indices)
            cluster_distances_nonan = cluster_distances[np.logical_not(np.isnan(cluster_distances))]
            ssd = np.sum(np.power(cluster_distances_nonan, 2))
            if ssd == 0.0:
                warnings.warn("Sum of square distances equals zero. Execution halted.", RuntimeWarning)
                sys.exit()
            ssd_dict[cluster_id] = ssd
        data_store = np.hstack((data_store, np.array([[ssd_dict[x] for x in data_store[:, 0].tolist()]]).T))
        return data_store

After Change


            indices = np.where(data_store[:, 0] == cluster_id)
            cluster_distances = np.take(data_store[:, 1], indices).tolist()
            ssd = np.sum(np.power(cluster_distances[0], 2), axis=1)
            for i, j in zip(indices[0], ssd):
                ssd_array[i] = j
        data_store = np.hstack((data_store, ssd_array))
        return data_store

    def _standard_distances(self, data_store):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: vc1492a/PyNomaly
Commit Name: 2526879b1f941c887eeb24a267b5ea010e20d5d7
Time: 2017-12-17
Author: vc1492a@gmail.com
File Name: PyNomaly/loop.py
Class Name: LocalOutlierProbability
Method Name: _ssd


Project Name: HyperGAN/HyperGAN
Commit Name: 287a7716977c52777bf22c1e8b8e7b5da39847d7
Time: 2018-12-03
Author: mikkel@255bits.com
File Name: hypergan/trainers/fitness_trainer.py
Class Name: FitnessTrainer
Method Name: _step


Project Name: HyperGAN/HyperGAN
Commit Name: 779ced0fabaaad57feedf544f452a69cf1c9baf6
Time: 2017-08-28
Author: mikkel@255bits.com
File Name: examples/2d-distribution.py
Class Name:
Method Name: train