e8b43356aa8cb8c659cae25aea32a49fd0881cd9,gluon/gluoncv2/models/densenet_cifar.py,CIFARDenseNet,__init__,#CIFARDenseNet#Any#Any#Any#Any#Any#Any#Any#,38

Before Change


                in_channels=in_channels,
                out_channels=init_block_channels))
            in_channels = init_block_channels
            for i, channels_per_stage in enumerate(channels):
                stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
                with stage.name_scope():
                    if i != 0:
                        stage.add(TransitionBlock(
                            in_channels=in_channels,
                            out_channels=(in_channels // 2),
                            bn_use_global_stats=bn_use_global_stats))
                        in_channels = in_channels // 2
                    for j, out_channels in enumerate(channels_per_stage):
                        stage.add(DenseUnit(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            bn_use_global_stats=bn_use_global_stats,
                            dropout_rate=dropout_rate))
                        in_channels = out_channels
                self.features.add(stage)
            self.features.add(PreResActivation(
                in_channels=in_channels,
                bn_use_global_stats=bn_use_global_stats))
            self.features.add(nn.AvgPool2D(
                pool_size=8,
                strides=1))

            self.output = nn.HybridSequential(prefix="")
            self.output.add(nn.Flatten())
            self.output.add(nn.Dense(
                units=classes,
                in_units=in_channels))

    def hybrid_forward(self, F, x):
        x = self.features(x)
        x = self.output(x)

After Change


                 bn_use_global_stats=False,
                 dropout_rate=0.0,
                 in_channels=3,
                 in_size=(32, 32),
                 classes=10,
                 **kwargs):
        super(CIFARDenseNet, self).__init__(**kwargs)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 5

Instances


Project Name: osmr/imgclsmob
Commit Name: e8b43356aa8cb8c659cae25aea32a49fd0881cd9
Time: 2019-01-27
Author: osemery@gmail.com
File Name: gluon/gluoncv2/models/densenet_cifar.py
Class Name: CIFARDenseNet
Method Name: __init__


Project Name: osmr/imgclsmob
Commit Name: 553f777ad245ef3caa799151e34e6cc37bbcb11a
Time: 2020-02-18
Author: osemery@gmail.com
File Name: tensorflow2/tf2cv/models/mobilenetv2.py
Class Name: MobileNetV2
Method Name: __init__


Project Name: osmr/imgclsmob
Commit Name: 14303300e332c3be5d669789f3aa736befa22575
Time: 2020-10-19
Author: osemery@gmail.com
File Name: tensorflow2/tf2cv/models/resnesta.py
Class Name: ResNeStA
Method Name: __init__


Project Name: osmr/imgclsmob
Commit Name: b89b592181e06850fa6eae6be04c2f8ec3b7fdaf
Time: 2018-08-18
Author: osemery@gmail.com
File Name: gluon/models/preresnet.py
Class Name: PreResNet
Method Name: __init__