e709576eb39ac3ddb1f59d291178b7364bdf068e,autokeras/preprocessors/common.py,CategoricalToNumerical,from_config,#Any#Any#,146
Before Change
}
obj = cls(**init_config)
obj.layer = preprocessors.deserialize(config["layer"])
obj.layer.encoding_layers = preprocessors.deserialize(config["encoding_layers"])
return obj
After Change
obj = cls(**init_config)
obj.layer = preprocessors.deserialize(config["layer"])
for encoding_layer, vocab in zip(
obj.layer.encoding_layers, config["encoding_vocab"]
):
if encoding_layer is not None:
encoding_layer.set_vocabulary(vocab)
return obj
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: keras-team/autokeras
Commit Name: e709576eb39ac3ddb1f59d291178b7364bdf068e
Time: 2020-10-30
Author: abraham.g.sebastian@gmail.com
File Name: autokeras/preprocessors/common.py
Class Name: CategoricalToNumerical
Method Name: from_config
Project Name: apache/incubator-tvm
Commit Name: a261454d865fb25e8f27ff11fbfa591aa5dfe64d
Time: 2020-10-30
Author: lianminzheng@gmail.com
File Name: python/tvm/auto_scheduler/measure.py
Class Name: MeasureInput
Method Name: deserialize