e709576eb39ac3ddb1f59d291178b7364bdf068e,autokeras/preprocessors/common.py,CategoricalToNumerical,from_config,#Any#Any#,146
  
 
Before Change 
        }
        obj = cls(**init_config)
        obj.layer = preprocessors.deserialize(config["layer"])
        obj.layer.encoding_layers = preprocessors.deserialize(config["encoding_layers"]) 
        return obj
After Change 
        obj = cls(**init_config)
        obj.layer = preprocessors.deserialize(config["layer"])
        for encoding_layer, vocab in zip(
            obj.layer.encoding_layers, config["encoding_vocab"] 
        ):
            if encoding_layer is not None:
                encoding_layer.set_vocabulary(vocab)
        return objIn pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances  Project Name: keras-team/autokeras
 Commit Name: e709576eb39ac3ddb1f59d291178b7364bdf068e
 Time: 2020-10-30
 Author: abraham.g.sebastian@gmail.com
 File Name: autokeras/preprocessors/common.py
 Class Name: CategoricalToNumerical
 Method Name: from_config
 Project Name: apache/incubator-tvm
 Commit Name: a261454d865fb25e8f27ff11fbfa591aa5dfe64d
 Time: 2020-10-30
 Author: lianminzheng@gmail.com
 File Name: python/tvm/auto_scheduler/measure.py
 Class Name: MeasureInput
 Method Name: deserialize