if self.net_param.whitening:
normalisation_layers.append(mean_var_normaliser)
augmentation_layers = []
if self.is_training:
if self.action_param.random_flipping_axes != -1:
augmentation_layers.append(RandomFlipLayer(
flip_axes=self.action_param.random_flipping_axes))
After Change
self.readers.append(ImageReader(SUPPORTED_INPUT))
else: // in the inference process use image input only
self.readers = [ImageReader(["image"])]
file_list = data_partitioner.get_file_list()
for reader in self.readers:
reader.initialise(data_param, task_param, file_list)
mean_var_normaliser = MeanVarNormalisationLayer(