//likelihood = GPy.likelihoods.Gaussian(Y)
Z = np.random.uniform(-3.,3.,(7,1))
k = GPy.kern.rbf(1) + GPy.kern.white(1)
// create simple GP Model - no input uncertainty on this one
m = GPy.models.SparseGPRegression(X, Y, kernel=k, Z=Z)
m.optimize("scg", messages=1, max_f_eval=optim_iters)
After Change
// likelihood = GPy.likelihoods.Gaussian(Y)
Z = np.random.uniform(-3., 3., (7, 1))
k = GPy.kern.rbf(1)
// create simple GP Model - no input uncertainty on this one
m = GPy.models.SparseGPRegression(X, Y, kernel=k, Z=Z)
m.optimize("scg", messages=1, max_f_eval=optim_iters)