:obj:`gpytorch.lazy.LazyTensor`
from .mul_lazy_tensor import MulLazyTensor
return MulLazyTensor(self, other).evaluate_kernel()
def _preconditioner(self):
(Optional) define a preconditioner (P) for linear conjugate gradients
After Change
from .non_lazy_tensor import NonLazyTensor
from .mul_lazy_tensor import MulLazyTensor
self = self.evaluate_kernel()
other = other.evaluate_kernel()
if isinstance(self, NonLazyTensor) or isinstance(other, NonLazyTensor):
return NonLazyTensor(self.evaluate() * other.evaluate())
else: