Returns details about the training history at each epoch.
if len(y.shape) == 1:
self.classes_ = list(np.unique(y))
if self.loss == "categorical_crossentropy":
y = to_categorical(y)
else:
self.classes_ = np.arange(0, y.shape[1])
After Change
if self.build_fn is None:
self.model = self.__call__(**self.filter_sk_params(self.__call__))
elif notisinstance(self.build_fn, types.FunctionType):
self.model = self.build_fn(
**self.filter_sk_params(self.build_fn.__call__))
else: