c899e6e816306956208664dcabd11e5e84e4bcb7,factor_analyzer/factor_analyzer.py,FactorAnalyzer,get_factor_variance,#FactorAnalyzer#,897
 
Before Change
            cumulative_variance = proportional_variance.cumsum(axis=0)
            // package variance info
            variance_info = pd.DataFrame([variance,
                                          proportional_variance,
                                          cumulative_variance],
                                         index=["SS Loadings",
                                                "Proportion Var",
                                                "Cumulative Var"])
            return variance_info
    def get_scores(self,
                   data,
                   scale_mean=None,
After Change
         array([0.35101885, 0.47938987, 0.55312938]))
        
        // meets all of our expected criteria
        check_is_fitted(self, "loadings_")
        loadings = self.loadings_.copy()
        return self._get_factor_variance(loadings)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
 Project Name: EducationalTestingService/factor_analyzer
 Commit Name: c899e6e816306956208664dcabd11e5e84e4bcb7
 Time: 2019-04-02
 Author: jbiggs@ets.org
 File Name: factor_analyzer/factor_analyzer.py
 Class Name: FactorAnalyzer
 Method Name: get_factor_variance
 Project Name: rtavenar/tslearn
 Commit Name: 66db34cbcd90ada3fc8727097a413f440a0f53cc
 Time: 2020-05-22
 Author: romain.tavenard@univ-rennes2.fr
 File Name: tslearn/svm.py
 Class Name: TimeSeriesSVC
 Method Name: support_vectors_time_series_
 Project Name: rtavenar/tslearn
 Commit Name: 6f82bff59cab1c4309c73874a484869eb0536a4b
 Time: 2019-07-09
 Author: givdwiel.vandewiele@ugent.be
 File Name: tslearn/shapelets.py
 Class Name: ShapeletModel
 Method Name: predict