c899e6e816306956208664dcabd11e5e84e4bcb7,factor_analyzer/factor_analyzer.py,FactorAnalyzer,get_factor_variance,#FactorAnalyzer#,897
Before Change
cumulative_variance = proportional_variance.cumsum(axis=0)
// package variance info
variance_info = pd.DataFrame([variance,
proportional_variance,
cumulative_variance],
index=["SS Loadings",
"Proportion Var",
"Cumulative Var"])
return variance_info
def get_scores(self,
data,
scale_mean=None,
After Change
array([0.35101885, 0.47938987, 0.55312938]))
// meets all of our expected criteria
check_is_fitted(self, "loadings_")
loadings = self.loadings_.copy()
return self._get_factor_variance(loadings)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: EducationalTestingService/factor_analyzer
Commit Name: c899e6e816306956208664dcabd11e5e84e4bcb7
Time: 2019-04-02
Author: jbiggs@ets.org
File Name: factor_analyzer/factor_analyzer.py
Class Name: FactorAnalyzer
Method Name: get_factor_variance
Project Name: rtavenar/tslearn
Commit Name: 66db34cbcd90ada3fc8727097a413f440a0f53cc
Time: 2020-05-22
Author: romain.tavenard@univ-rennes2.fr
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: support_vectors_time_series_
Project Name: rtavenar/tslearn
Commit Name: 6f82bff59cab1c4309c73874a484869eb0536a4b
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/shapelets.py
Class Name: ShapeletModel
Method Name: predict