b9aac6f4f32d755595c577c5fc5ac0936a914031,doc/examples/reconst_csd.py,,,#,32
Before Change
fetch_stanford_hardi()
img, gtab = read_stanford_hardi()
data = img.get_data()
You can verify the b-values of the dataset by looking at the attribute
``gtab.bvals``. Now that a datasets with multiple gradient directions is
After Change
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.image import load_nifti
hardi_fname, hardi_bval, hardi_bvec = get_fnames("stanford_hardi")
data, affine = load_nifti(hardi_fname)
bvals, bvecs = read_bvals_bvecs(hardi_bval, hardi_bvec)
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 4
Instances Project Name: nipy/dipy
Commit Name: b9aac6f4f32d755595c577c5fc5ac0936a914031
Time: 2020-01-03
Author: skab12@gmail.com
File Name: doc/examples/reconst_csd.py
Class Name:
Method Name:
Project Name: nipy/dipy
Commit Name: b9aac6f4f32d755595c577c5fc5ac0936a914031
Time: 2020-01-03
Author: skab12@gmail.com
File Name: doc/examples/piesno.py
Class Name:
Method Name:
Project Name: nipy/dipy
Commit Name: 6636b1363d90aafa2acd9f782be9815f8b9dac01
Time: 2020-01-03
Author: skab12@gmail.com
File Name: doc/examples/streamline_registration.py
Class Name:
Method Name:
Project Name: nipy/dipy
Commit Name: b9aac6f4f32d755595c577c5fc5ac0936a914031
Time: 2020-01-03
Author: skab12@gmail.com
File Name: doc/examples/denoise_nlmeans.py
Class Name:
Method Name: