311ac284d99ea7243e0918949f3a499a7a93fab5,examples/decoding/plot_haxby_space_net.py,,,#,14

Before Change


    coef_img.to_filename("haxby_%s_weights.nii" % penalty)
    print("- %s %s" % (penalty, "-" * 60))
    print("Number of train samples : %i" % condition_mask_train.sum())
    print("Number of test samples  : %i" % condition_mask_test.sum())
    print("Classification accuracy : %g%%" % accuracy)
    print("_" * 80)

plt.show()

After Change



// Visualization
coef_img = decoder.coef_img_
plot_stat_map(coef_img, background_img,
              title="tv-l1: accuracy %g%%" % accuracy,
              cut_coords=(-34, -16), display_mode="yz")

// Save the coefficients to a nifti file
coef_img.to_filename("haxby_tv-l1_weights.nii")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: nilearn/nilearn
Commit Name: 311ac284d99ea7243e0918949f3a499a7a93fab5
Time: 2015-11-29
Author: gael.varoquaux@normalesup.org
File Name: examples/decoding/plot_haxby_space_net.py
Class Name:
Method Name:


Project Name: nilearn/nilearn
Commit Name: 989ee60856e201cb7bdd0c6c585834e18d528046
Time: 2019-04-16
Author: jacobwvogel@gmail.com
File Name: examples/03_connectivity/plot_compare_decomposition.py
Class Name:
Method Name:


Project Name: nilearn/nilearn
Commit Name: bbc47fc85e9bc8166110670c50c3791ade8698c6
Time: 2016-02-11
Author: alexandre.abadie@inria.fr
File Name: examples/04_manipulating_images/plot_negate_image.py
Class Name:
Method Name: