feature_data.append( feature_array )
// Concatenate features from all channels
feature_data_array = np.concatenate(feature_data, axis=1)
result[0] = feature_data_array
def propagateDirty(self, slot, subindex, roi):
self.EdgeFeatures.setDirty()
After Change
// Could use join() or merge() here, but we know the rows are already in the right order, and concat() should be faster.
all_edge_features_df = pd.DataFrame( rag.edge_ids, columns=["sp1", "sp2"] )
all_edge_features_df = pd.concat([all_edge_features_df] + edge_feature_dfs, axis=1, copy=False)
result[0] = all_edge_features_df
def propagateDirty(self, slot, subindex, roi):
self.EdgeFeaturesDataFrame.setDirty()