bed4f2dd50ff54eb7629362c3d03a3b758e0745a,spotlight/layers.py,BloomEmbedding,forward,#BloomEmbedding#Any#,115
 
Before Change
        batch_size = indices.size()[0]
        compressed_indices = (indices
                              .unsqueeze(1)
                              .expand(batch_size, self.num_hash_functions))
        masks = self._mask_tensor.expand(batch_size, self.num_hash_functions)
        compressed_indices = compressed_indices.detach()
        compressed_indices = Variable((compressed_indices.data * masks.data) %
                                      self.compressed_num_embeddings)
        return self.embeddings(compressed_indices).mean(1)
After Change
        // where the embedding indices are already two-dimensional.
        embedding = self.embeddings(indices * self._masks[0] % self.compressed_num_embeddings)
        for mask in self._masks[1:]:
            embedding += self.embeddings(indices * mask % self.compressed_num_embeddings)
        embedding /= self.num_hash_functions
        return embedding

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
 Project Name: maciejkula/spotlight
 Commit Name: bed4f2dd50ff54eb7629362c3d03a3b758e0745a
 Time: 2017-08-09
 Author: maciej.kula@gmail.com
 File Name: spotlight/layers.py
 Class Name: BloomEmbedding
 Method Name: forward
 Project Name: uber/pyro
 Commit Name: e173956c4dfc65137f2b8ff41460fa55f672e17a
 Time: 2021-01-05
 Author: fritz.obermeyer@gmail.com
 File Name: pyro/contrib/forecast/util.py
 Class Name: 
 Method Name: _reshape_batch_univariate_transform
 Project Name: open-mmlab/mmdetection
 Commit Name: a6236b789b8f4e2e66c8379199f40ecef9afce06
 Time: 2020-04-21
 Author: 40779233+ZwwWayne@users.noreply.github.com
 File Name: mmdet/core/anchor/anchor_generator.py
 Class Name: AnchorGenerator
 Method Name: valid_flags