6a455db8f33ceefa0f8c544dc427ba6402f85588,gpflow/conditionals/util.py,,independent_interdomain_conditional,#Any#Any#Any#Any#,173
Before Change
- mean: [N, P]
- variance: [N, P], [N, P, P], [P, N, N], [N, P, N, P]
M, L, N, P = [Kmn.shape[i] for i in range(Kmn.shape.ndims)]
Lm = tf.linalg.cholesky(Kmm) // [L, M, M]
After Change
- mean: [N, P]
- variance: [N, P], [N, P, P], [P, N, N], [N, P, N, P]
M, L, N, P = tf.unstack(tf.shape(Kmn), num=Kmn.shape.ndims, axis=0)
Lm = tf.linalg.cholesky(Kmm) // [L, M, M]
// Compute the projection matrix A
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: GPflow/GPflow
Commit Name: 6a455db8f33ceefa0f8c544dc427ba6402f85588
Time: 2020-01-07
Author: st--@users.noreply.github.com
File Name: gpflow/conditionals/util.py
Class Name:
Method Name: independent_interdomain_conditional
Project Name: GPflow/GPflow
Commit Name: 6a455db8f33ceefa0f8c544dc427ba6402f85588
Time: 2020-01-07
Author: st--@users.noreply.github.com
File Name: gpflow/conditionals/util.py
Class Name:
Method Name: fully_correlated_conditional_repeat
Project Name: GPflow/GPflow
Commit Name: 6a455db8f33ceefa0f8c544dc427ba6402f85588
Time: 2020-01-07
Author: st--@users.noreply.github.com
File Name: gpflow/conditionals/mo_conditionals.py
Class Name:
Method Name: inducing_point_conditional