75afcd766e0e45fdb8bd3007b3114257f11a7ec4,tutorials/auto_scheduler/tune_conv2d_layer_cuda.py,,,#,70

Before Change


// Print equivalent python schedule API. This can be used for debugging and
// learning the behavior of the auto-scheduler.
print("Equivalent python schedule:")
print(task.compute_dag.print_python_code_from_state(inp.state))

// Rebuild the binary. This shows how you can apply the best schedule from a
// log file without reruning the search again.
sch, args = task.compute_dag.apply_steps_from_state(inp.state)

After Change


    runner=measure_ctx.runner,
    measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)
task.tune(tune_option, search_policy=search_policy)

// Kill the measurement process
del measure_ctx
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_conv2d_layer_cuda.py
Class Name:
Method Name:


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tests/python/unittest/test_auto_scheduler_search_policy.py
Class Name:
Method Name: search_common


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_matmul_x86.py
Class Name:
Method Name: