raise ValueError("Need the training objective and the output placeholder to train the model.")
// Apply defences
x_preproc = self._apply_processing(x)x_preproc, y_preproc = self._apply_defences(x_preproc, y, fit=True)
num_batch = int(np.ceil(len(x_preproc) / float(batch_size)))
ind = np.arange(len(x_preproc))
After Change
raise ValueError("Need the training objective and the output placeholder to train the model.")
// Apply defences
x_defences, y_defences, _ = self._apply_preprocessing(x, y, fit=True)
num_batch = int(np.ceil(len(x_defences) / float(batch_size)))
ind = np.arange(len(x_defences))