b89d864ba91813f3ccce46134fd7eec49a7501ed,librosa/util/_nnls.py,,_nnls,#Any#Any#Any#Any#Any#Any#,57

Before Change



        LAt = np.dot(L, A.T)
    else:
        LAt = np.linalg.solve(np.dot(A.T, A) + rho * np.eye(m), A.T)

    LAtB = np.dot(LAt, B)
    LAtApI = np.dot(LAt, A) - np.eye(m)

After Change


    // This puts our initial iterate X into the column space of A
    // so that we have strong (local) convexity
    X = np.linalg.lstsq(A, B)[0]
    Y = np.zeros(X.shape, dtype=A.dtype)
    np.maximum(X, 0.0, Y)
    W = X - Y

    residual = W.copy()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: librosa/librosa
Commit Name: b89d864ba91813f3ccce46134fd7eec49a7501ed
Time: 2019-04-28
Author: brian.mcfee@nyu.edu
File Name: librosa/util/_nnls.py
Class Name:
Method Name: _nnls


Project Name: librosa/librosa
Commit Name: a4100f17a0433eda78a6cf393f08f9a8d9b46fdb
Time: 2019-06-21
Author: brian.mcfee@nyu.edu
File Name: librosa/util/_nnls.py
Class Name:
Method Name: _nnls


Project Name: scipy/scipy
Commit Name: e3959c100f7aa79cb82587be65948e0c863b5c14
Time: 2018-03-24
Author: wieser.eric@gmail.com
File Name: scipy/linalg/decomp.py
Class Name:
Method Name: cdf2rdf