partitioner=self._partitioners.get("w", None),
regularizer=self._regularizers.get("w", None))
tf_out_shape = ((batch_size, 1,) + self._output_shape +
(self.output_channels,))
// Add an extra dimension to the input - a height of 1.
After Change
batch_size = tf.expand_dims(tf.shape(inputs)[0], 0)
out_shape = (1, self.output_shape[0])
out_channels = (self.output_channels,)
out_shape_tuple = out_shape + out_channelsconv_output_shape = tf.convert_to_tensor(out_shape_tuple)
tf_out_shape = tf.concat([batch_size, conv_output_shape], 0)
// Add an extra dimension to the input - a height of 1.
inputs = tf.expand_dims(inputs, 1)