05425c36bd27b0611f0ea202aaf9d3c3934bda59,cleverhans/attacks.py,MomentumIterativeMethod,generate,#MomentumIterativeMethod#Any#,482
Before Change
if self.ord == np.inf:
normalized_grad = tf.sign(momentum)
elif self.ord in [1, 2]:
reduc_ind = list(xrange(1, len(momentum.get_shape())))
if self.ord == 1:
norm = tf.reduce_sum(tf.abs(momentum),
After Change
// Normalize current gradient and add it to the accumulated gradient
red_ind = list(xrange(1, len(grad.get_shape())))
avoid_zero_div = 1e-12
grad = grad / tf.maximum(avoid_zero_div,
tf.reduce_mean(tf.abs(grad),
red_ind,
keep_dims=True))
momentum = self.decay_factor * momentum + grad
if self.ord == np.inf:
normalized_grad = tf.sign(momentum)
elif self.ord == 1:
norm = tf.maximum(avoid_zero_div,
tf.reduce_sum(tf.abs(momentum),
red_ind,
keep_dims=True))
normalized_grad = momentum / norm
elif self.ord == 2:
square = tf.reduce_sum(tf.square(momentum),
red_ind,
keep_dims=True)
norm = tf.sqrt(tf.maximum(avoid_zero_div, square))
normalized_grad = momentum / norm
else:
raise NotImplementedError("Only L-inf, L1 and L2 norms are "
"currently implemented.")
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: tensorflow/cleverhans
Commit Name: 05425c36bd27b0611f0ea202aaf9d3c3934bda59
Time: 2017-12-23
Author: dongyinpeng@gmail.com
File Name: cleverhans/attacks.py
Class Name: MomentumIterativeMethod
Method Name: generate
Project Name: rail-berkeley/softlearning
Commit Name: 0cef3e36b3283534bc0395d167e4e2a63c5ff9e2
Time: 2018-07-25
Author: kristian.hartikainen@gmail.com
File Name: softlearning/environments/image_pusher.py
Class Name: ImageForkReacherEnv
Method Name: reset
Project Name: rail-berkeley/softlearning
Commit Name: 04ebc156705ce228991bc25cb6a6e5d5fdb10909
Time: 2018-07-24
Author: kristian.hartikainen@gmail.com
File Name: softlearning/environments/image_pusher.py
Class Name: ImageForkReacherEnv
Method Name: reset