7d209b46e2f6402e44c69f6fe00384aa14286b08,models/experimental/resnet_bfloat16/imagenet_input.py,ImageNetInput,input_fn,#ImageNetInput#Any#,119
Before Change
fetch_dataset, cycle_length=self.num_cores, sloppy=True))
dataset = dataset.shuffle(1024)
dataset = dataset.map(
self.dataset_parser,
num_parallel_calls=self.num_parallel_calls)
dataset = dataset.prefetch(batch_size)
// For training, batch as usual. When evaluating, prevent accidentally
// evaluating the same image twice by dropping the final batch if it is less
// than a full batch size. As long as this validation is done with
After Change
// than a full batch size. As long as this validation is done with
// consistent batch size, exactly the same images will be used.
if not self.is_training:
dataset = dataset.apply(batching.filter_irregular_batches(batch_size))
if self.use_transpose:
dataset = dataset.map(
lambda images, labels: (tf.transpose(images, [1, 2, 3, 0]), labels),
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: tensorflow/tpu
Commit Name: 7d209b46e2f6402e44c69f6fe00384aa14286b08
Time: 2018-03-22
Author: frankchn@google.com
File Name: models/experimental/resnet_bfloat16/imagenet_input.py
Class Name: ImageNetInput
Method Name: input_fn
Project Name: tensorflow/benchmarks
Commit Name: dcbb03bc8454537b7f79955ec4dbbeb2c51afe74
Time: 2018-09-11
Author: haoyuzhang@google.com
File Name: scripts/tf_cnn_benchmarks/ssd_dataloader.py
Class Name: SSDInputReader
Method Name: __call__
Project Name: tensorflow/tpu
Commit Name: 9de6656a779e73ac61995bd87044af21b3f37951
Time: 2018-04-19
Author: frankchn@google.com
File Name: models/experimental/amoeba_net/amoeba_net_model.py
Class Name: InputPipeline
Method Name: input_fn