aa1eb21d82804500e2357cde21b18bcf6f87825a,spotlight/factorization/implicit.py,ImplicitFactorizationModel,predict,#ImplicitFactorizationModel#Any#Any#,245
Before Change
if item_ids is None:
item_ids = np.arange(self._num_items)
if isinstance(user_ids, int):
user_ids = np.repeat(user_ids, len(item_ids))
self._check_input(user_ids, item_ids)
user_ids = torch.from_numpy(user_ids.reshape(-1, 1).astype(np.int64))
item_ids = torch.from_numpy(item_ids.reshape(-1, 1).astype(np.int64))
user_var = Variable(gpu(user_ids, self._use_cuda))
item_var = Variable(gpu(item_ids, self._use_cuda))
out = self._net(user_var, item_var)
After Change
self._check_input(user_ids, item_ids, allow_items_none=True)
self._net.train(False)
user_ids, item_ids = _predict_process_ids(user_ids, item_ids,
self._num_items,
self._use_cuda)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: maciejkula/spotlight
Commit Name: aa1eb21d82804500e2357cde21b18bcf6f87825a
Time: 2017-08-02
Author: maciej.kula@gmail.com
File Name: spotlight/factorization/implicit.py
Class Name: ImplicitFactorizationModel
Method Name: predict
Project Name: ncullen93/torchsample
Commit Name: 70b15bde1d8a1b29d24f23bac1a28a63be0fb4d2
Time: 2017-04-20
Author: ncullen@modv-vlan533.0018.apn.wlan.med.upenn.edu
File Name: torchsample/modules/super_module.py
Class Name: SuperModule
Method Name: evaluate_loader
Project Name: dpressel/mead-baseline
Commit Name: 3d9e51d5034e89bcec3a04eff3e646c70b45edb2
Time: 2017-03-16
Author: dpressel@gmail.com
File Name: classify/python/tf/train.py
Class Name: Trainer
Method Name: train