f70e71d5c7fdc8e25391e54e74c3402fb323ad5c,examples/plot_employee_salaries.py,,,#,45

Before Change


// we then get the data, and define a target column we will try to predict,
// as well as a dirty colum we will encode with the different methods.
// the rest will have a standard encoding
data_path = fetching.get_data_dir()
fetching.fetch_employee_salaries()
data_file = os.path.join(data_path, "employee_salaries", "rows.csv")
df = pd.read_csv(data_file).astype(str)
df["Current Annual Salary"] = [float(s[1:]) for s
                               in df["Current Annual Salary"]]
df["Year First Hired"] = [int(s.split("/")[-1])
                          for s in df["Date First Hired"]]

target_column = "Current Annual Salary"
y = df[target_column].values.ravel()

After Change


// and carry out some basic preprocessing:
df["Current Annual Salary"] = df["Current Annual Salary"].str.strip("$").astype(
    float)
df["Date First Hired"] = pd.to_datetime(df["Date First Hired"])
df["Year First Hired"] = df["Date First Hired"].apply(lambda x: x.year)

target_column = "Current Annual Salary"
y = df[target_column].values.ravel()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: dirty-cat/dirty_cat
Commit Name: f70e71d5c7fdc8e25391e54e74c3402fb323ad5c
Time: 2018-06-06
Author: pierreglaser@msn.com
File Name: examples/plot_employee_salaries.py
Class Name:
Method Name:


Project Name: QUANTAXIS/QUANTAXIS
Commit Name: 4113a6a3be19167a8c551f8ae20e849ac851e52c
Time: 2019-03-25
Author: zhongjy1992@outlook.com
File Name: QUANTAXIS/QAFetch/QAQuery.py
Class Name:
Method Name: QA_fetch_index_day


Project Name: QUANTAXIS/QUANTAXIS
Commit Name: 5b4d04de17457286fe4e5f3e0e8295db42d0f064
Time: 2020-04-05
Author: 11652964@qq.com
File Name: QUANTAXIS/QAFetch/QAQuery.py
Class Name:
Method Name: QA_fetch_index_min