im_shape = X_train[0].shape
x = tf.placeholder(tf.float32, shape=(None,im_shape[0],im_shape[1],im_shape[2]))
y = tf.placeholder(tf.float32, shape=(None,NB_CLASSES))
model = cnn.cnn_model(im_shape,act="relu")
predictions = model(x)
def evaluate():
// Evaluate the accuracy of the MNIST model on legitimate test examples
eval_params = {"batch_size": BATCH_SIZE}