1aff940e60d7d62bd82ddf7469e666197832e212,src/classifiers/cnn_unittest.py,TestCNNModel,test_mnist,#TestCNNModel#,55

Before Change



        im_shape = X_train[0].shape

        x = tf.placeholder(tf.float32, shape=(None,im_shape[0],im_shape[1],im_shape[2]))
        y = tf.placeholder(tf.float32, shape=(None,NB_CLASSES))

        model = cnn.cnn_model(im_shape,act="relu")
        predictions = model(x)

        def evaluate():
            // Evaluate the accuracy of the MNIST model on legitimate test examples
            eval_params = {"batch_size": BATCH_SIZE}

After Change



        scores = model.evaluate(X_test,Y_test)

        print("\naccuracy: %.2f%%" % (scores[1] * 100))

if __name__ == "__main__":
    unittest.main()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 1aff940e60d7d62bd82ddf7469e666197832e212
Time: 2017-05-11
Author: valentina.zantedeschi@ibm.com
File Name: src/classifiers/cnn_unittest.py
Class Name: TestCNNModel
Method Name: test_mnist


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 1aff940e60d7d62bd82ddf7469e666197832e212
Time: 2017-05-11
Author: valentina.zantedeschi@ibm.com
File Name: src/classifiers/cnn_unittest.py
Class Name: TestCNNModel
Method Name: test_cifar


Project Name: eriklindernoren/PyTorch-YOLOv3
Commit Name: bc4dfbcc2ecae4b3a4bedc2bd18909a9208c05cb
Time: 2018-06-01
Author: eriklindernoren@gmail.com
File Name: train.py
Class Name:
Method Name: