d1ac7b831ad36cd0e4bdd7980819f83208345148,gpflow/expectations.py,,_expectation,#Any#Any#Any#Any#Any#,560
Before Change
if not kern.on_separate_dimensions:
raise NotImplementedError("Product currently needs to be defined on separate dimensions.") // pragma: no cover
with tf.control_dependencies([
tf.assert_equal(tf.rank(p.var), 2,
message="Product currently only supports diagonal Xcov.", name="assert_Xcov_diag"),
]):
_expectation_fn = lambda k: _expectation(p, k, feat, k, feat)
return functools.reduce(tf.multiply, [_expectation_fn(k) for k in kern.kern_list])
@dispatch(DiagonalGaussian, object, (InducingFeature, type(None)), object, (InducingFeature, type(None)))
def _expectation(p, obj1, obj2, obj3, obj4):
gauss = Gaussian(p.mu, tf.matrix_diag(p.var))
return _expectation(gauss, obj1, obj2, obj3, obj4)
After Change
:return: NxDxQ
with params_as_tensors_for(mean1), params_as_tensors_for(mean2):
N = tf.shape(p.mu)[0]
e_xxt = p.cov + (p.mu[:, :, None] * p.mu[:, None, :]) // NxDxD
e_xxt_A = tf.matmul(e_xxt, tf.tile(mean2.A[None, ...], (N, 1, 1))) // NxDxQ
e_x_bt = p.mu[:, :, None] * mean2.b[None, None, :] // NxDxQ
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: GPflow/GPflow
Commit Name: d1ac7b831ad36cd0e4bdd7980819f83208345148
Time: 2018-02-07
Author: alex.ialongo@gmail.com
File Name: gpflow/expectations.py
Class Name:
Method Name: _expectation
Project Name: tensorflow/transform
Commit Name: f73cdc286a3e125cf7019336621cb10370ebfd52
Time: 2019-04-25
Author: askerryryan@google.com
File Name: tensorflow_transform/tf_utils.py
Class Name:
Method Name: _reduce_vocabulary_inputs
Project Name: reinforceio/tensorforce
Commit Name: d8a1abca5431a8b957cd0fc0a81e0ecbf509e57b
Time: 2018-02-17
Author: mi.schaarschmidt@gmail.com
File Name: tensorforce/core/memories/prioritized_replay.py
Class Name: PrioritizedReplay
Method Name: tf_retrieve_timesteps