b87368e1e7fd832b505db9cc08015ac7af8f95de,VAE/main.py,,train,#Any#,94
Before Change
loss = loss.data[0]
optimizer.step()
if i % 10 == 0:
print("Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.4f}".format(
epoch,
i + BATCH_SIZE, training_data.size(0),
float(i + BATCH_SIZE) / training_data.size(0) * 100,
loss / BATCH_SIZE))
def test(epoch):
After Change
model.train()
train_loss = 0
for batch in train_loader:
batch = Variable(batch)
optimizer.zero_grad()
recon_batch, mu, logvar = model(batch)
loss = loss_function(recon_batch, batch, mu, logvar)
loss.backward()
train_loss += loss
optimizer.step()
print("====> Epoch: {} Loss: {:.4f}".format(
epoch,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: pytorch/examples
Commit Name: b87368e1e7fd832b505db9cc08015ac7af8f95de
Time: 2016-12-23
Author: jvanamersfoort@twitter.com
File Name: VAE/main.py
Class Name:
Method Name: train
Project Name: pyprob/pyprob
Commit Name: a8c9e491db1edde70c36fa8ae4a17aa3a4eaf49a
Time: 2017-10-09
Author: atilimgunes.baydin@gmail.com
File Name: pyprob/util.py
Class Name:
Method Name: