8dc523d9bd92011caca608833221916d9e1b8130,Orange/classification/logistic_regression.py,LogisticRegressionLearner,fit,#LogisticRegressionLearner#Any#Any#Any#,48
Before Change
return cost, grad
def fit(self, X, Y, W):
if list(np.unique(Y).astype(int)) != [0, 1]:
raise ValueError("Logistic regression requires a binary class "
"variable")
if Y.shape[1] > 1:
raise ValueError("Logistic regression does not support "
"multi-label classification")
After Change
intercept_scaling=self.intercept_scaling,
random_state=self.random_state
)
clsf = lr.fit(X, Y.ravel())
return LogisticRegressionClassifier(clsf)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: biolab/orange3
Commit Name: 8dc523d9bd92011caca608833221916d9e1b8130
Time: 2014-02-18
Author: ales.erjavec@fri.uni-lj.si
File Name: Orange/classification/logistic_regression.py
Class Name: LogisticRegressionLearner
Method Name: fit
Project Name: ysig/GraKeL
Commit Name: 0e84313d49f4b3f5aef0e0d558ecc34e271b2ad5
Time: 2018-01-24
Author: y.siglidis@gmail.com
File Name: grakel/graph_kernels.py
Class Name: GraphKernel
Method Name: fit
Project Name: EducationalTestingService/skll
Commit Name: 84c6230896e6fee31ecca27fa9fe4a4306b89b60
Time: 2014-08-06
Author: dblanchard@ets.org
File Name: skll/data.py
Class Name:
Method Name: write_feature_file