799a21efa211907c19d3afdd611ac7d70774f462,skimage/restoration/_denoise.py,,_wavelet_threshold,#Any#Any#Any#Any#Any#,338
Before Change
threshold = sigma**2 / np.sqrt(max(img.var() - sigma**2, 0))
denoised_detail = [{key: pywt.threshold(level[key], value=threshold,
mode=mode) for key in level} for level in coeffs[1:]]
denoised_coeffs = [coeffs[0]] + [d for d in denoised_detail]
return pywt.waverecn(denoised_coeffs, wavelet)
After Change
threshold = [{key: _bayes_thresh(level[key], var) for key in level}
for level in coeffs[1:]]
if np.isscalar(threshold):
// a single threshold for all coefficient arrays
denoised_detail = [{key: pywt.threshold(level[key],
value=threshold,
mode=mode) for key in level}
for level in coeffs[-1]]
else:
// dict of unique threshold coefficients for each detail coeff. array
denoised_detail = [{key: pywt.threshold(level[key],
value=thresh[key],
mode=mode) for key in level}
for thresh, level in zip(threshold, coeffs[-1])]
denoised_coeffs = [coeffs[0]] + denoised_detail
return pywt.waverecn(denoised_coeffs, wavelet)
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 4
Instances Project Name: scikit-image/scikit-image
Commit Name: 799a21efa211907c19d3afdd611ac7d70774f462
Time: 2016-09-06
Author: gregory.lee@cchmc.org
File Name: skimage/restoration/_denoise.py
Class Name:
Method Name: _wavelet_threshold
Project Name: scipy/scipy
Commit Name: e952a94737dc1bbd30a15c390c2c17899bdc0a47
Time: 2015-07-28
Author: n59_ru@hotmail.com
File Name: scipy/optimize/_numdiff.py
Class Name:
Method Name: group_columns
Project Name: prody/ProDy
Commit Name: 9748b1dc29f7a5bcfb1eef8f3ecbb1e508ae1ca5
Time: 2018-02-16
Author: hongchun@pitt.edu
File Name: prody/dynamics/signature.py
Class Name:
Method Name: showMatrixAverageCrossCorr
Project Name: prody/ProDy
Commit Name: 86ce7f9e7db046d0bbf2a4aef50cabd4731167e6
Time: 2018-04-30
Author: shz66@pitt.edu
File Name: prody/utilities/catchall.py
Class Name:
Method Name: showMatrix