c128615c048f69e532714201e1e5b4e1c1663d14,examples/doa_algorithms.py,,,#,55

Before Change


R = pra.circular_2D_array([0, 0], 12, 0., 0.15)

// propagation filter bank
propagation_vector = -np.array([np.cos(azimuth), np.sin(azimuth)])
delays = np.dot(R.T, propagation_vector) / c * fs  // in fractional samples
filter_bank = pra.fractional_delay_filter_bank(delays)

// we use a white noise signal for the source
x = np.random.randn((nfft // 2 + 1) * nfft)

// convolve the source signal with the fractional delay filters
// to get the microphone input signals
mic_signals = [ fftconvolve(x, filter, mode="same") for filter in filter_bank ]

// Now add the microphone noise
for signal in mic_signals:
    signal += np.random.randn(*signal.shape) * 10**(- SNR / 20)

////////////////////////////////////////////////////////////////
// Compute the STFT frames needed

After Change



// Create an anechoic room
room_dim = np.r_[10.,10.]
aroom = pra.ShoeBox(room_dim, fs=fs, max_order=0, sigma2_awgn=sigma2)

// add the source
source_location = room_dim / 2 + distance * np.r_[np.cos(azimuth), np.sin(azimuth)]
source_signal = np.random.randn((nfft // 2 + 1) * nfft)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: LCAV/pyroomacoustics
Commit Name: c128615c048f69e532714201e1e5b4e1c1663d14
Time: 2018-04-27
Author: fakufaku@gmail.com
File Name: examples/doa_algorithms.py
Class Name:
Method Name:


Project Name: LCAV/pyroomacoustics
Commit Name: 914d68fb87c1b5fb90a46b82a71a0defef768d48
Time: 2020-01-23
Author: fakufaku@gmail.com
File Name: examples/room_simulation.py
Class Name:
Method Name:


Project Name: LCAV/pyroomacoustics
Commit Name: 914d68fb87c1b5fb90a46b82a71a0defef768d48
Time: 2020-01-23
Author: fakufaku@gmail.com
File Name: examples/room_shoebox_3d.py
Class Name:
Method Name: