f35578804a2dcbc9066d48a103bcaf4ed1d0fd5d,GPy/kern/prod_orthogonal.py,prod_orthogonal,dK_dX,#prod_orthogonal#Any#Any#Any#Any#,76
Before Change
def dK_dX(self,dL_dK,X,X2,target):
derivative of the covariance matrix with respect to X.
if X2 is None: X2 = X
K1 = np.zeros((X.shape[0],X2.shape[0]))
K2 = np.zeros((X.shape[0],X2.shape[0]))
self.k1.K(X[:,0:self.k1.D],X2[:,0:self.k1.D],K1)
self.k2.K(X[:,self.k1.D:],X2[:,self.k1.D:],K2)
self.k1.dK_dX(dL_dK*K2, X[:,:self.k1.D], X2[:,:self.k1.D], target)
self.k2.dK_dX(dL_dK*K1, X[:,self.k1.D:], X2[:,self.k1.D:], target)
After Change
def dK_dX(self,dL_dK,X,X2,target):
derivative of the covariance matrix with respect to X.
self._K_computations(X,X2)
self.k1.dK_dX(dL_dK*self._K2 , X[:,:self.k1.D], X2[:,:self.k1.D], target)
self.k2.dK_dX(dL_dK*self._K1 , X[:,self.k1.D:], X2[:,self.k1.D:], target)
def Kdiag(self,X,target):
Compute the diagonal of the covariance matrix associated to X.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 34
Instances Project Name: SheffieldML/GPy
Commit Name: f35578804a2dcbc9066d48a103bcaf4ed1d0fd5d
Time: 2013-04-23
Author: james.hensman@gmail.com
File Name: GPy/kern/prod_orthogonal.py
Class Name: prod_orthogonal
Method Name: dK_dX
Project Name: SheffieldML/GPy
Commit Name: f35578804a2dcbc9066d48a103bcaf4ed1d0fd5d
Time: 2013-04-23
Author: james.hensman@gmail.com
File Name: GPy/kern/prod_orthogonal.py
Class Name: prod_orthogonal
Method Name: dK_dtheta
Project Name: SheffieldML/GPy
Commit Name: f35578804a2dcbc9066d48a103bcaf4ed1d0fd5d
Time: 2013-04-23
Author: james.hensman@gmail.com
File Name: GPy/kern/prod_orthogonal.py
Class Name: prod_orthogonal
Method Name: dK_dX
Project Name: SheffieldML/GPy
Commit Name: 6dced9ac39485c1d9bfe9ccc3b1e1c032521fee7
Time: 2013-04-28
Author: james.hensman@gmail.com
File Name: GPy/kern/prod_orthogonal.py
Class Name: prod_orthogonal
Method Name: dK_dX