79c3d3004346ae19bb13332f84771a00a224e788,numerox/util.py,,cv,#Any#Any#Any#,5
Before Change
for train_index, test_index in kf.split(eras):
idx = self.df.era.isin(eras[train_index])
dtrain = self[idx]
idx = self.df.era.isin(eras[test_index])
dtest = self[idx]
yield dtrain, dtest
def row_sample(data, fraction=0.01, seed=0):
After Change
kf = KFold(n_splits=kfold, shuffle=True, random_state=random_state)
eras = data.unique_era()
for train_index, test_index in kf.split(eras):
era_train = [eras[i] for i in train_index]
era_test = [eras[i] for i in test_index]
dtrain = data.era_isin(era_train)
dtest = data.era_isin(era_test)
yield dtrain, dtest
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: kwgoodman/numerox
Commit Name: 79c3d3004346ae19bb13332f84771a00a224e788
Time: 2017-10-24
Author: kwgoodman@gmail.com
File Name: numerox/util.py
Class Name:
Method Name: cv
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: df9e0ba7b1de6862aa69a21f9cac7490f488eb40
Time: 2018-12-11
Author: jcastaldo08@gmail.com
File Name: category_encoders/leave_one_out.py
Class Name: LeaveOneOutEncoder
Method Name: transform_leave_one_out
Project Name: pfnet/optuna
Commit Name: fd633602af08b199d87d222a8cfb85acea17b55a
Time: 2019-09-11
Author: suehiro619@gmail.com
File Name: optuna/visualization.py
Class Name:
Method Name: _get_intermediate_plot