79c3d3004346ae19bb13332f84771a00a224e788,numerox/util.py,,cv,#Any#Any#Any#,5

Before Change


    for train_index, test_index in kf.split(eras):
        idx = self.df.era.isin(eras[train_index])
        dtrain = self[idx]
        idx = self.df.era.isin(eras[test_index])
        dtest = self[idx]
        yield dtrain, dtest


def row_sample(data, fraction=0.01, seed=0):

After Change


    kf = KFold(n_splits=kfold, shuffle=True, random_state=random_state)
    eras = data.unique_era()
    for train_index, test_index in kf.split(eras):
        era_train = [eras[i] for i in train_index]
        era_test = [eras[i] for i in test_index]
        dtrain = data.era_isin(era_train)
        dtest = data.era_isin(era_test)
        yield dtrain, dtest

Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: kwgoodman/numerox
Commit Name: 79c3d3004346ae19bb13332f84771a00a224e788
Time: 2017-10-24
Author: kwgoodman@gmail.com
File Name: numerox/util.py
Class Name:
Method Name: cv


Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: df9e0ba7b1de6862aa69a21f9cac7490f488eb40
Time: 2018-12-11
Author: jcastaldo08@gmail.com
File Name: category_encoders/leave_one_out.py
Class Name: LeaveOneOutEncoder
Method Name: transform_leave_one_out


Project Name: pfnet/optuna
Commit Name: fd633602af08b199d87d222a8cfb85acea17b55a
Time: 2019-09-11
Author: suehiro619@gmail.com
File Name: optuna/visualization.py
Class Name:
Method Name: _get_intermediate_plot