c9b1d78f806892193efdebee2789a47fd148b984,examples/imagenet_preprocessing.py,,input_fn,#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,477
Before Change
// This number is low enough to not cause too much contention on small systems
// but high enough to provide the benefits of parallelization. You may want
// to increase this number if you have a large number of CPU cores.
dataset = dataset.apply(tf.data.experimental.parallel_interleave(
tf.data.TFRecordDataset, cycle_length=48))
return process_record_dataset(
dataset=dataset,
is_training=is_training,
After Change
// This number is low enough to not cause too much contention on small systems
// but high enough to provide the benefits of parallelization. You may want
// to increase this number if you have a large number of CPU cores.
dataset = dataset.interleave(
tf.data.TFRecordDataset, cycle_length=48,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return process_record_dataset(
dataset=dataset,
is_training=is_training,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: taehoonlee/tensornets
Commit Name: c9b1d78f806892193efdebee2789a47fd148b984
Time: 2021-01-01
Author: me@taehoonlee.com
File Name: examples/imagenet_preprocessing.py
Class Name:
Method Name: input_fn
Project Name: calico/basenji
Commit Name: 872ba9f6f42997f4263bd99d72f161cec41c4207
Time: 2019-06-07
Author: drk@calicolabs.com
File Name: basenji/dataset.py
Class Name: SeqDataset
Method Name: make_dataset
Project Name: tensorflow/models
Commit Name: eebea3f8220736501b89815d5cfcd82f6f6fb8b3
Time: 2019-03-29
Author: haoyuzhang@google.com
File Name: official/resnet/imagenet_main.py
Class Name:
Method Name: input_fn