5b4d04de17457286fe4e5f3e0e8295db42d0f064,QUANTAXIS/QAFetch/QAQuery.py,,QA_fetch_index_min,#Any#Any#Any#Any#Any#Any#,618
Before Change
{"_id": 0},
batch_size=10000
)
if format in ["dict", "json"]:
return [data for data in cursor]
// for item in cursor:
_data = pd.DataFrame([item for item in cursor])
_data = _data.assign(datetime=pd.to_datetime(_data["datetime"]))
// _data.append([str(item["code"]), float(item["open"]),
// float(item["high"]), float(
// item["low"]), float(item["close"]), int(item["up_count"]),
// int(item["down_count"]), float(item["vol"]), float(item["amount"]),
// item["datetime"], item["time_stamp"], item["date"], item["type"]])
// _data = DataFrame(_data, columns=[
// "code", "open", "high", "low", "close", "up_count", "down_count",
// "volume", "amount", "datetime", "time_stamp", "date", "type"])
// _data["datetime"] = pd.to_datetime(_data["datetime"])
_data = _data.set_index("datetime", drop=False)
if format in ["numpy", "np", "n"]:
return numpy.asarray(_data)
elif format in ["list", "l", "L"]:
return numpy.asarray(_data).tolist()
After Change
res = pd.DataFrame([item for item in cursor])
try:
res = res.assign(
volume=res.vol,
datetime=pd.to_datetime(res.datetime)
).query("volume>1").drop_duplicates(["datetime",
"code"]).set_index(
"datetime",
drop=False
)
// return res
except:
res = None
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: QUANTAXIS/QUANTAXIS
Commit Name: 5b4d04de17457286fe4e5f3e0e8295db42d0f064
Time: 2020-04-05
Author: 11652964@qq.com
File Name: QUANTAXIS/QAFetch/QAQuery.py
Class Name:
Method Name: QA_fetch_index_min
Project Name: catalyst-cooperative/pudl
Commit Name: d07e9d7e5a586d20d0a5b7367f7e8dc7dfb55b95
Time: 2017-11-08
Author: zane.selvans@catalyst.coop
File Name: pudl/analysis.py
Class Name:
Method Name: yearly_sum_eia
Project Name: QUANTAXIS/QUANTAXIS
Commit Name: 4113a6a3be19167a8c551f8ae20e849ac851e52c
Time: 2019-03-25
Author: zhongjy1992@outlook.com
File Name: QUANTAXIS/QAFetch/QAQuery.py
Class Name:
Method Name: QA_fetch_index_day