75afcd766e0e45fdb8bd3007b3114257f11a7ec4,tutorials/auto_scheduler/tune_conv2d_layer_cuda.py,,,#,70

Before Change


// Print equivalent python schedule API. This can be used for debugging and
// learning the behavior of the auto-scheduler.
print("Equivalent python schedule:")
print(task.compute_dag.print_python_code_from_state(inp.state))

// Rebuild the binary. This shows how you can apply the best schedule from a
// log file without reruning the search again.
sch, args = task.compute_dag.apply_steps_from_state(inp.state)

After Change


print(task.print_best(log_file, print_mode="schedule"))

print("CUDA source code:")
print(task.print_best(log_file, print_mode="cuda"))

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// A more complicated example is to resume the search.
// In this case, we need to create the search policy and cost model by ourselves
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_conv2d_layer_cuda.py
Class Name:
Method Name:


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tests/python/unittest/test_auto_scheduler_search_policy.py
Class Name:
Method Name: search_common


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_matmul_x86.py
Class Name:
Method Name: