5016a008790087d9cb47e7f91099f3dba7960ee2,mlxtend/regressor/stacking_cv_regression.py,StackingCVRegressor,fit,#StackingCVRegressor#Any#Any#Any#Any#,119

Before Change


            // less susceptible to overfitting.
            //
            for train_idx, holdout_idx in kfold.split(X, y, groups):
                instance = clone(regr)
                if sample_weight is None:
                    instance.fit(X[train_idx], y[train_idx])
                else:
                    instance.fit(X[train_idx], y[train_idx],

After Change


        // Advantage of this complex approach is that data points we"re
        // predicting have not been trained on by the algorithm, so it"s
        // less susceptible to overfitting.
        if sample_weight is None:
            fit_params = None
        else:
            fit_params = dict(sample_weight=sample_weight)
        meta_features = np.column_stack([cross_val_predict(
                regr, X, y, groups=groups, cv=kfold,
                n_jobs=self.n_jobs, fit_params=fit_params,
                pre_dispatch=self.pre_dispatch)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: rasbt/mlxtend
Commit Name: 5016a008790087d9cb47e7f91099f3dba7960ee2
Time: 2019-03-14
Author: 36086881+qiagu@users.noreply.github.com
File Name: mlxtend/regressor/stacking_cv_regression.py
Class Name: StackingCVRegressor
Method Name: fit


Project Name: ANTsX/ANTsPy
Commit Name: d23adb96056f3a4ff2d477ae9051a79b481d625b
Time: 2018-11-23
Author: stnava@gmail.com
File Name: ants/utils/mask_image.py
Class Name:
Method Name: mask_image


Project Name: rasbt/mlxtend
Commit Name: 5016a008790087d9cb47e7f91099f3dba7960ee2
Time: 2019-03-14
Author: 36086881+qiagu@users.noreply.github.com
File Name: mlxtend/regressor/stacking_cv_regression.py
Class Name: StackingCVRegressor
Method Name: fit


Project Name: OpenNMT/OpenNMT-py
Commit Name: 31f044032f2b7079299ff0656c32dc8123b8d497
Time: 2018-06-12
Author: vince62s@yahoo.com
File Name: onmt/utils/loss.py
Class Name:
Method Name: filter_shard_state