130cbadff294b686e466d430f26b2d069f6bbf59,metric_learn/lsml.py,_BaseLSML,_fit,#_BaseLSML#Any#Any#,55
Before Change
self.w_ = weights
self.w_ /= self.w_.sum() // weights must sum to 1
if self.prior is None:
X = np.vstack({tuple(row) for row in
quadruplets.reshape(-1, quadruplets.shape[2])})
prior_inv = np.atleast_2d(np.cov(X, rowvar=False))
M = np.linalg.inv(prior_inv)
else:
M = self.prior
prior_inv = np.linalg.inv(self.prior)
After Change
prior = "identity"
else:
prior = self.prior
M, prior_inv = _initialize_metric_mahalanobis(quadruplets, prior,
return_inverse=True,
strict_pd=True,
matrix_name="prior")
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: metric-learn/metric-learn
Commit Name: 130cbadff294b686e466d430f26b2d069f6bbf59
Time: 2019-06-07
Author: 31916524+wdevazelhes@users.noreply.github.com
File Name: metric_learn/lsml.py
Class Name: _BaseLSML
Method Name: _fit
Project Name: metric-learn/metric-learn
Commit Name: 130cbadff294b686e466d430f26b2d069f6bbf59
Time: 2019-06-07
Author: 31916524+wdevazelhes@users.noreply.github.com
File Name: metric_learn/sdml.py
Class Name: _BaseSDML
Method Name: _fit
Project Name: Rostlab/nalaf
Commit Name: edf49b4c7137e902763477f634da90fe038d6364
Time: 2017-01-13
Author: i@juanmi.rocks
File Name: nalaf/learning/lib/sklsvm.py
Class Name: SklSVM
Method Name: train