130cbadff294b686e466d430f26b2d069f6bbf59,metric_learn/lsml.py,_BaseLSML,_fit,#_BaseLSML#Any#Any#,55
 
Before Change
      self.w_ = weights
    self.w_ /= self.w_.sum()  // weights must sum to 1
    if self.prior is None:
      X = np.vstack({tuple(row) for row in
                     quadruplets.reshape(-1, quadruplets.shape[2])})
      prior_inv = np.atleast_2d(np.cov(X, rowvar=False))
      M = np.linalg.inv(prior_inv)
    else:
      M = self.prior
      prior_inv = np.linalg.inv(self.prior)
After Change
      prior = "identity"
    else:
      prior = self.prior
    M, prior_inv = _initialize_metric_mahalanobis(quadruplets, prior,
                                                  return_inverse=True,
                                                  strict_pd=True,
                                                  matrix_name="prior")

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
 Project Name: metric-learn/metric-learn
 Commit Name: 130cbadff294b686e466d430f26b2d069f6bbf59
 Time: 2019-06-07
 Author: 31916524+wdevazelhes@users.noreply.github.com
 File Name: metric_learn/lsml.py
 Class Name: _BaseLSML
 Method Name: _fit
 Project Name: metric-learn/metric-learn
 Commit Name: 130cbadff294b686e466d430f26b2d069f6bbf59
 Time: 2019-06-07
 Author: 31916524+wdevazelhes@users.noreply.github.com
 File Name: metric_learn/sdml.py
 Class Name: _BaseSDML
 Method Name: _fit
 Project Name: Rostlab/nalaf
 Commit Name: edf49b4c7137e902763477f634da90fe038d6364
 Time: 2017-01-13
 Author: i@juanmi.rocks
 File Name: nalaf/learning/lib/sklsvm.py
 Class Name: SklSVM
 Method Name: train