b8f10b387de929bcb250e4750064355e50b44317,examples/plot_gp_minimize_1d.py,,,#,6
Before Change
posterior_mean = posterior_mean.ravel()
posterior_std = posterior_std.ravel()
plt.subplot(subplot_no)
plt.plot(vals.ravel(), posterior_mean, label="Posterior mean")
plt.plot(vals.ravel(), posterior_std, label="Posterior std")
plt.plot(vals.ravel(), acquis_values, label="Acquisition values.")
plt.legend(loc="best")
After Change
from skopt.gp_opt import acquisition
bounds = [[-2, 2]]
x = np.linspace(-2, 2, 200)
func_values = [bench3(xi) for xi in x]
vals = np.reshape(x, (-1, 1))
for n_iter in [10, 20]:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: scikit-optimize/scikit-optimize
Commit Name: b8f10b387de929bcb250e4750064355e50b44317
Time: 2016-04-18
Author: manojkumarsivaraj334@gmail.com
File Name: examples/plot_gp_minimize_1d.py
Class Name:
Method Name:
Project Name: matplotlib/matplotlib
Commit Name: 9937d332ee11207ff2c01501cf3e1a8d5127fbb9
Time: 2019-12-02
Author: 2836374+timhoffm@users.noreply.github.com
File Name: examples/misc/zorder_demo.py
Class Name:
Method Name:
Project Name: nl8590687/ASRT_SpeechRecognition
Commit Name: b86b5661fc01a6204b3eb2a455a341e135db8270
Time: 2018-06-15
Author: 3210346136@qq.com
File Name: general_function/file_wav.py
Class Name:
Method Name: