e4a36f3215735f8c351beb8f27edeb02eabb121f,pynets/dmri/track.py,,run_track,#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,356

Before Change



    // Load atlas parcellation (and its wm-gm interface reduced version for seeding)
    atlas_img = nib.load(labels_im_file)
    atlas_data = atlas_img.get_fdata().astype("int")
    atlas_img_wm_gm_int = nib.load(labels_im_file_wm_gm_int)
    atlas_data_wm_gm_int = atlas_img_wm_gm_int.get_fdata().astype("int")

    // Build mask vector from atlas for later roi filtering

After Change



    // Load atlas parcellation (and its wm-gm interface reduced version for seeding)
    atlas_data = nib.load(labels_im_file).get_fdata().astype("int")
    atlas_data_wm_gm_int = nib.load(labels_im_file_wm_gm_int).get_fdata().astype("int")

    // Build mask vector from atlas for later roi filtering
    parcels = []
    i = 0
    for roi_val in np.unique(atlas_data)[1:]:
        parcels.append(atlas_data == roi_val)
        i = i + 1

    if np.sum(atlas_data) == 0:
        raise ValueError("ERROR: No non-zero voxels found in atlas. Check any roi masks and/or wm-gm interface images "
                         "to verify overlap with dwi-registered atlas.")

    // Iteratively build a list of streamlines for each ROI while tracking
    print("%s%s%s%s" % (Fore.GREEN, "Target number of samples: ", Fore.BLUE, target_samples))
    print(Style.RESET_ALL)
    print("%s%s%s%s" % (Fore.GREEN, "Using curvature threshold(s): ", Fore.BLUE, curv_thr_list))
    print(Style.RESET_ALL)
    print("%s%s%s%s" % (Fore.GREEN, "Using step size(s): ", Fore.BLUE, step_list))
    print(Style.RESET_ALL)
    print("%s%s%s%s" % (Fore.GREEN, "Tracking type: ", Fore.BLUE, track_type))
    print(Style.RESET_ALL)
    if directget == "prob":
        print("%s%s%s%s" % (Fore.GREEN, "Direction-getting type: ", Fore.BLUE, "Probabilistic"))
    elif directget == "boot":
        print("%s%s%s%s" % (Fore.GREEN, "Direction-getting type: ", Fore.BLUE, "Bootstrapped"))
    elif directget == "closest":
        print("%s%s%s%s" % (Fore.GREEN, "Direction-getting type: ", Fore.BLUE, "Closest Peak"))
    elif directget == "det":
        print("%s%s%s%s" % (Fore.GREEN, "Direction-getting type: ", Fore.BLUE, "Deterministic Maximum"))
    print(Style.RESET_ALL)

    // Commence Ensemble Tractography
    streamlines = track_ensemble(dwi_data, target_samples, atlas_data_wm_gm_int, parcels, mod_fit,
                                 prep_tissues(B0_mask, gm_in_dwi, vent_csf_in_dwi, wm_in_dwi, tiss_class),
                                 get_sphere("repulsion724"), directget, curv_thr_list, step_list, track_type,
                                 maxcrossing, max_length, roi_neighborhood_tol, min_length, waymask)
    print("Tracking Complete")

    // Create streamline density map
    [streams, dir_path, dm_path] = create_density_map(dwi_img, utils.do_dir_path(atlas, dwi_file), streamlines,
                                                      conn_model, target_samples, node_size, curv_thr_list, step_list,
                                                      network, roi)

    del streamlines
    del dwi_data
    del atlas_data_wm_gm_int
    del atlas_data
    del mod_fit
    dwi_img.uncache()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: dPys/PyNets
Commit Name: e4a36f3215735f8c351beb8f27edeb02eabb121f
Time: 2019-11-04
Author: dpisner@utexas.edu
File Name: pynets/dmri/track.py
Class Name:
Method Name: run_track


Project Name: dPys/PyNets
Commit Name: e4a36f3215735f8c351beb8f27edeb02eabb121f
Time: 2019-11-04
Author: dpisner@utexas.edu
File Name: pynets/dmri/track.py
Class Name:
Method Name: track_ensemble


Project Name: dPys/PyNets
Commit Name: e4a36f3215735f8c351beb8f27edeb02eabb121f
Time: 2019-11-04
Author: dpisner@utexas.edu
File Name: pynets/dmri/track.py
Class Name:
Method Name: prep_tissues