9d56361641a64ff73ac630812ecd4964eedbc7aa,gat/graph_attention_layer.py,GraphAttention,call,#GraphAttention#Any#,72

Before Change


                dense = Dense(1)(slice)  // N x 1 (basically "a(Wh_i, Wh_j)" in the paper)
                // TODO: masking
                e_i = K.reshape(dense, (1, -1))  // 1 x N (e_i in the paper)
                softmax = K.squeeze(K.softmax(e_i))  // N (alpha_i in the paper)
                softmax_broadcast = K.transpose(K.reshape(K.tile(softmax, [self.F_]), [self.F_, -1]))
                node_features = K.sum(softmax_broadcast * linear_transf, axis=0)
                if self.use_bias:
                    output = K.bias_add(node_features, self.bias)
                if self.heads_combination == "concat" and self.activation is not None:

After Change



    def call(self, inputs):
        X = inputs[0]  // input graph (B x F)
        G = inputs[1]  // full graph (N x F) (this is necessary in code, but not in theory. Check section 2.2 of the paper)
        B = K.shape(X)[0]  // Get batch size at runtime
        N = K.shape(G)[0]  // Get number of nodes in the graph at runtime

        outputs = []  // Will store the outputs of each attention head (B x F" or B x KF")
        for head in range(self.attention_heads):
            kernel = self.kernels[head]  // W in the paper (F x F")
            attention_kernel = self.attention_kernels[head]  // Attention network a in paper (2*F" x 1)

            // Compute inputs to attention network
            linear_transf_X = K.dot(X, kernel)  // B x F"
            linear_transf_G = K.dot(G, kernel)  // N x F"

            // Repeat feature vectors of input: [[1], [2]] becomes [[1], [1], [2], [2]]
            repeated = K.reshape(K.tile(linear_transf_X, [1, N]), (-1, self.F_))  // B*N x F"
            // Tile feature vectors of full graph: [[1], [2]] becomes [[1], [2], [1], [2]]
            tiled = K.tile(linear_transf_G, [B, 1])  // B*N x F"
            // Build combinations
            combinations = K.concatenate([repeated, tiled])  // N*B x 2F"
            combination_slices = K.reshape(combinations, (B, -1, 2 * self.F_))  // B x N x 2F"

            // Attention head
            dense = K.dot(combination_slices, attention_kernel)  // B x N x 1 (a(Wh_i, Wh_j) in the paper)
            dense = K.squeeze(dense, -1)  // B x N
            dense = K.softmax(dense)  // B x N

            // TODO: masking with Vaswani method (add -inf to masked coefficients)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 6

Instances


Project Name: danielegrattarola/keras-gat
Commit Name: 9d56361641a64ff73ac630812ecd4964eedbc7aa
Time: 2017-11-09
Author: daniele.grattarola@gmail.com
File Name: gat/graph_attention_layer.py
Class Name: GraphAttention
Method Name: call


Project Name: keras-team/keras
Commit Name: c2244d2a4cb5f86968fb117f75469283a19b8a24
Time: 2018-10-21
Author: gabrieldemarmiesse@gmail.com
File Name: tests/keras/backend/backend_test.py
Class Name: TestBackend
Method Name: test_sparse_dot


Project Name: nilearn/nilearn
Commit Name: 38b1a68f9f74ebb1a0f8cf2f73a9e606f7c022c2
Time: 2015-07-28
Author: elvis.dohmatob@inria.fr
File Name: nilearn/decoding/tests/test_same_api.py
Class Name:
Method Name: test_smoothlasso_and_tv_same_for_pure_l1_another_test


Project Name: rodluger/starry
Commit Name: 4f75512036063f707ac077a22bc028c81edfef27
Time: 2019-12-17
Author: rodluger@gmail.com
File Name: starry/kepler.py
Class Name: System
Method Name: draw