4638cbc8d106450f1e821750b4af0ea88408a6ee,models/hbos.py,Hbos,fit,#Hbos#Any#,23

Before Change


            // very important to do scaling. Not necessary to use min max
            density_norm = (
                hist[:, i].reshape(-1, 1))
            out_score = np.log(1 / (density_norm + self.alpha))

            for j in range(self.n):
                // out sample left
                if bin_ind[j] == 0:

After Change


            bin_ind = np.digitize(X[:, i], bin_edges[:, i], right=False)

            // very important to do scaling. Not necessary to use min max
            out_score = np.max(hist[:, i]) - hist[:, i]
            out_score = MinMaxScaler().fit_transform(out_score.reshape(-1, 1))

            for j in range(self.n):
                // out sample left
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: yzhao062/pyod
Commit Name: 4638cbc8d106450f1e821750b4af0ea88408a6ee
Time: 2018-03-03
Author: yuezhao@cs.toronto.edu
File Name: models/hbos.py
Class Name: Hbos
Method Name: fit


Project Name: mahyarnajibi/SNIPER
Commit Name: 72caa3677f5f9cc09ed98324c76454c38a7e8098
Time: 2018-06-04
Author: mahyarnajibi@gmail.com
File Name: lib/metric.py
Class Name: MaskLogLossMetric
Method Name: update


Project Name: tensorflow/models
Commit Name: 64710c051f26a2778c03fc15ef29c4bcae01df32
Time: 2018-08-22
Author: reedwm@google.com
File Name: official/recommendation/ncf_main.py
Class Name:
Method Name: evaluate_model