// very important to do scaling. Not necessary to use min max
density_norm = (
hist[:, i].reshape(-1, 1))
out_score = np.log(1 / (density_norm + self.alpha))
for j in range(self.n):
// out sample left
if bin_ind[j] == 0:
After Change
bin_ind = np.digitize(X[:, i], bin_edges[:, i], right=False)
// very important to do scaling. Not necessary to use min max
out_score = np.max(hist[:, i]) - hist[:, i]
out_score = MinMaxScaler().fit_transform(out_score.reshape(-1, 1))
for j in range(self.n):
// out sample left