603026f0325339c6412e5c045b5149f351bd1778,tensorforce/core/models/model.py,Model,api_act,#Model#,764

Before Change



            Module.update_tensors(**states, **internals)
            actions, internals = self.core_act(states=states, internals=internals)
            Module.update_tensors(**actions)

        // Exploration
        with tf.control_dependencies(
            control_inputs=(util.flatten(xs=actions) + util.flatten(xs=internals))

After Change


                )

        else:
            variable_noise_tensors = (incremented_timestep,)

        // Initialize or retrieve internals
        if len(self.internals_spec) > 0:
            with tf.control_dependencies(control_inputs=variable_noise_tensors):
                buffer_index = self.buffer_index[parallel]
                one = tf.constant(value=1, dtype=util.tf_dtype(dtype="long"))

                def initialize_internals():
                    internals = OrderedDict()
                    for name, init in self.internals_init.items():
                        internals[name] = tf.expand_dims(input=init, axis=0)
                    return internals

                def retrieve_internals():
                    internals = OrderedDict()
                    for name in self.internals_spec:
                        internals[name] = tf.gather_nd(
                            params=self.internals_buffer[name],
                            indices=[(parallel, buffer_index - one)]
                        )
                    return internals

                zero = tf.constant(value=0, dtype=util.tf_dtype(dtype="long"))
                initialize = tf.math.equal(x=buffer_index, y=zero)
                internals = self.cond(
                    pred=initialize, true_fn=initialize_internals, false_fn=retrieve_internals
                )
                retrieved_internals = util.flatten(xs=internals)

        else:
            internals = OrderedDict()
            retrieved_internals = variable_noise_tensors

        // Core act: retrieve actions and internals
        with tf.control_dependencies(control_inputs=retrieved_internals):
            Module.update_tensors(**states, **internals)
            actions, internals = self.core_act(states=states, internals=internals)
            Module.update_tensors(**actions)

        // Exploration
        with tf.control_dependencies(
            control_inputs=(util.flatten(xs=actions) + util.flatten(xs=internals))
        ):
            if not isinstance(self.exploration, dict):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: reinforceio/tensorforce
Commit Name: 603026f0325339c6412e5c045b5149f351bd1778
Time: 2019-02-06
Author: alexkuhnle@t-online.de
File Name: tensorforce/core/models/model.py
Class Name: Model
Method Name: api_act


Project Name: reinforceio/tensorforce
Commit Name: cce10ef4682c6b5d4a8b24edd0032088707b5491
Time: 2019-10-12
Author: alexkuhnle@t-online.de
File Name: tensorforce/core/models/tensorforce.py
Class Name: TensorforceModel
Method Name: tf_optimize


Project Name: reinforceio/tensorforce
Commit Name: 7b9bb10862356401c474c5dd916108ec0069ec2d
Time: 2020-04-18
Author: alexkuhnle@t-online.de
File Name: tensorforce/core/estimators/estimator.py
Class Name: Estimator
Method Name: tf_estimate