b45f35862afbca09ff1c70be1cc4d1d6ca6c9617,pyriemann/classification.py,MDM,_predict_distances,#MDM#Any#,46
Before Change
dist = numpy.empty((Nt, Nc))
for m in range(Nc):
for k in range(Nt):
dist[k, m] = distance(covtest[k, :, :], self.covmeans[m],
metric=self.metric_dist)
return dist
def predict(self, covtest):
dist = self._predict_distances(covtest)
After Change
else:
dist = Parallel(n_jobs=self.n_jobs)(delayed(distance)(covtest, self.covmeans[m], self.metric_dist) for m in range(Nc))
dist = numpy.concatenate(dist, axis=1)
return dist
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: alexandrebarachant/pyRiemann
Commit Name: b45f35862afbca09ff1c70be1cc4d1d6ca6c9617
Time: 2015-07-03
Author: alexandre.barachant@gmail.com
File Name: pyriemann/classification.py
Class Name: MDM
Method Name: _predict_distances
Project Name: ray-project/ray
Commit Name: 244aafdcf89ae814975c8c4e3faf0bd4995c7878
Time: 2020-09-05
Author: sven@anyscale.io
File Name: rllib/utils/exploration/tests/test_curiosity.py
Class Name: OneHotWrapper
Method Name: observation
Project Name: IndicoDataSolutions/finetune
Commit Name: 04573605a3bef45d29d81302bce154f220bbd7f5
Time: 2019-01-15
Author: matthew.bayer@indico.io
File Name: finetune/target_encoders.py
Class Name: OrdinalRegressionEncoder
Method Name: rank_to_thresholds