e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30,lxmls/deep_learning/numpy_models/rnn.py,NumpyRNN,log_forward,#NumpyRNN#Any#,34
 
Before Change
        y = h[1:, :].dot(W_y.T)
        // Softmax
        log_p_y = y - logsumexp(y, axis=1)[:, None]
        return log_p_y, y, h, z_e, input
    def backpropagation(self, input, output):
After Change
        y = h[1:, :].dot(W_y.T)
        // Softmax
        log_p_y = y - logsumexp(y, axis=1, keepdims=True)
        return log_p_y, y, h, z_e, input
    def backpropagation(self, input, output):

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
 Project Name: LxMLS/lxmls-toolkit
 Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
 Time: 2018-02-12
 Author: ramon@astudillo.com
 File Name: lxmls/deep_learning/numpy_models/rnn.py
 Class Name: NumpyRNN
 Method Name: log_forward
 Project Name: LxMLS/lxmls-toolkit
 Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
 Time: 2018-02-12
 Author: ramon@astudillo.com
 File Name: lxmls/deep_learning/numpy_models/mlp.py
 Class Name: NumpyMLP
 Method Name: log_forward
 Project Name: LxMLS/lxmls-toolkit
 Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
 Time: 2018-02-12
 Author: ramon@astudillo.com
 File Name: lxmls/deep_learning/numpy_models/log_linear.py
 Class Name: NumpyLogLinear
 Method Name: log_forward