e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30,lxmls/deep_learning/numpy_models/rnn.py,NumpyRNN,log_forward,#NumpyRNN#Any#,34
Before Change
y = h[1:, :].dot(W_y.T)
// Softmax
log_p_y = y - logsumexp(y, axis=1)[:, None]
return log_p_y, y, h, z_e, input
def backpropagation(self, input, output):
After Change
y = h[1:, :].dot(W_y.T)
// Softmax
log_p_y = y - logsumexp(y, axis=1, keepdims=True)
return log_p_y, y, h, z_e, input
def backpropagation(self, input, output):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: LxMLS/lxmls-toolkit
Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
Time: 2018-02-12
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/numpy_models/rnn.py
Class Name: NumpyRNN
Method Name: log_forward
Project Name: LxMLS/lxmls-toolkit
Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
Time: 2018-02-12
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/numpy_models/mlp.py
Class Name: NumpyMLP
Method Name: log_forward
Project Name: LxMLS/lxmls-toolkit
Commit Name: e8caea8ea26a18f93c49ceb6e8d9a48403ca9e30
Time: 2018-02-12
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/numpy_models/log_linear.py
Class Name: NumpyLogLinear
Method Name: log_forward