reconstruction = accuracy(tf.image.rgb_to_grayscale(gan.uniform_sample), tf.image.rgb_to_grayscale(x))
for i in range(args.steps):
gan.step()
r,d = gan.session.run([reconstruction, diversity])
sampler.sample("sample.png", False)
print("R", r,"D", d)
After Change
config_filename = "colorizer-"+str(uuid.uuid4())+".json"
hc.Selector().save(config_filename, config)
with open(search_output, "a") as myfile:
myfile.write(config_filename+","+",".join([str(x) for x in metric_sum])+"\n")
if args.action == "train":
metrics = train(config, inputs, args)