c09d7b252a74c0fb4ca6d21516867cb7942b7cf5,ml/kubeflow-pipelines/samples/kubeflow-tf/workflow1.py,,workflow1,#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,22
Before Change
preprocess_mode: dsl.PipelineParam=dsl.PipelineParam(name="preprocess-mode", value="local"),
tfma_mode: dsl.PipelineParam=dsl.PipelineParam(name="tfma-mode", value="local")):
tfteval = dsl.ContainerOp(
name = "tft-eval",
image = "gcr.io/google-samples/ml-pipeline-dataflow-tftbq-taxi",
arguments = [ "--input_handle", input_handle_eval, "--outfile_prefix", outfile_prefix_eval,
"--working_dir", "%s/%s/tft-eval" % (working_dir, "{{workflow.name}}"),
"--project", project,
"--mode", preprocess_mode,
"--setup_file", tft_setup_file,
"--max-rows", 5000,
"--ts1", ts1,
"--ts2", ts2,
"--stage", "eval",
"--preprocessing-module", preprocessing_module1]
// file_outputs = {"transformed": "/output.txt"}
)
tfttrain = dsl.ContainerOp(
name = "tft-train",
image = "gcr.io/google-samples/ml-pipeline-dataflow-tftbq-taxi",
arguments = [ "--input_handle", input_handle_train, "--outfile_prefix", outfile_prefix_train,
After Change
preprocess_mode: dsl.PipelineParam=dsl.PipelineParam(name="preprocess-mode", value="local"),
tfma_mode: dsl.PipelineParam=dsl.PipelineParam(name="tfma-mode", value="local")):
tfteval = dsl.ContainerOp(
name = "tft-eval",
image = "gcr.io/google-samples/ml-pipeline-dataflow-tftbq-taxi",
arguments = [ "--input_handle", input_handle_eval, "--outfile_prefix", outfile_prefix_eval,
"--working_dir", "%s/%s/tft-eval" % (working_dir, "{{workflow.name}}"),
"--project", project,
"--mode", preprocess_mode,
"--setup_file", tft_setup_file,
"--max-rows", 5000,
"--ts1", ts1,
"--ts2", ts2,
"--stage", "eval",
"--preprocessing-module", preprocessing_module1]
// file_outputs = {"transformed": "/output.txt"}
).apply(gcp.use_gcp_secret("user-gcp-sa"))
tfttrain = dsl.ContainerOp(
name = "tft-train",
image = "gcr.io/google-samples/ml-pipeline-dataflow-tftbq-taxi",
arguments = [ "--input_handle", input_handle_train, "--outfile_prefix", outfile_prefix_train,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: amygdala/code-snippets
Commit Name: c09d7b252a74c0fb4ca6d21516867cb7942b7cf5
Time: 2019-01-18
Author: amy@infosleuth.net
File Name: ml/kubeflow-pipelines/samples/kubeflow-tf/workflow1.py
Class Name:
Method Name: workflow1
Project Name: amygdala/code-snippets
Commit Name: c09d7b252a74c0fb4ca6d21516867cb7942b7cf5
Time: 2019-01-18
Author: amy@infosleuth.net
File Name: ml/kubeflow-pipelines/samples/kubeflow-tf/workflow2.py
Class Name:
Method Name: workflow2
Project Name: amygdala/code-snippets
Commit Name: 01da74d54913ad04c6bd77e056cc98b266ec9850
Time: 2019-01-21
Author: amy@infosleuth.net
File Name: ml/kubeflow-pipelines/samples/kubeflow-tf/gh_summ.py
Class Name:
Method Name: gh_summ