520e8fb57b890a7249334d9e90c9ad209d0b849f,modules.py,retina,foveate,#retina#Any#Any#,42
Before Change
size = int(self.s * size)
// resize the patches to squares of size g
phi = [p.numpy() for p in phi]
phi = [
resize_array(p, self.g) if p.shape[1] != self.g
else np.expand_dims(p, 1) for p in phi
]
// concatenate into a single tensor
phi = Variable(torch.from_numpy(np.concatenate(phi, 1)))
After Change
// concatenate into a single tensor and flatten
phi = torch.cat(phi, 1)
phi = phi.view(phi.shape[0], -1)
return phi
def extract_patch(self, x, l, size):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: kevinzakka/recurrent-visual-attention
Commit Name: 520e8fb57b890a7249334d9e90c9ad209d0b849f
Time: 2018-02-10
Author: kevinarmandzakka@gmail.com
File Name: modules.py
Class Name: retina
Method Name: foveate
Project Name: merenlab/anvio
Commit Name: 26e7ddacabffdd9361197e0bf17d5357805013b8
Time: 2020-02-26
Author: kiefl.evan@gmail.com
File Name: anvio/contigops.py
Class Name: Auxiliary
Method Name: run_SNVs
Project Name: cornellius-gp/gpytorch
Commit Name: a7a12d157766b69cf4b1ddbb5fcdacfe485dc6fa
Time: 2019-04-03
Author: gpleiss@gmail.com
File Name: test/kernels/test_matern_kernel.py
Class Name: TestMaternKernel
Method Name: test_ard_separate_batch