6dad66511b8432570eb53b67b8fd889913ac15e3,examples/opensets/mnist_model2.py,MyModel,_build,#MyModel#,17
Before Change
def _build(self, *args, **kwargs):
images_shape = [None] + list(self.get_from_config("images_shape"))
input_images = tf.placeholder("uint8", images_shape, name="input_images")
input_labels = tf.placeholder("uint8", [None], name="input_labels")
images = tf.to_float(input_images)
features = conv2d_block(images, 32, 3, layout="canp", name="layer1")
features = flatten(features)
layer1 = tf.layers.dense(features, units=512, activation=tf.nn.relu)
model_output = tf.layers.dense(layer1, units=10)
predictions = tf.identity(model_output, name="predictions")
targets = tf.one_hot(input_labels, depth=10, name="targets")
predicted_labels = tf.argmax(model_output, axis=1, name="predicted_labels")
After Change
placeholders, inputs = self._make_inputs(names)
num_classes = self.num_classes("labels")
x = conv2d_block(inputs["images"], 32, 3, layout="cnap", name="layer1")
x = conv2d_block(x, 64, 3, layout="cnap", name="layer2")
//x = conv2d_block(x, 128, 3, layout="cnap", name="layer3")
x = conv2d_block(x, num_classes, 3, layout="cnap", name="layer4")
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: analysiscenter/batchflow
Commit Name: 6dad66511b8432570eb53b67b8fd889913ac15e3
Time: 2017-11-01
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name: MyModel
Method Name: _build
Project Name: tryolabs/luminoth
Commit Name: bd2f006eb0170735290f180dc9a8e95aed72411f
Time: 2017-06-28
Author: javirey@gmail.com
File Name: frcnn/rpn.py
Class Name: RPN
Method Name: loss
Project Name: NVIDIA/OpenSeq2Seq
Commit Name: 5014fbe46b4398bfdde8918c4a343f8d13ae121d
Time: 2018-05-17
Author: igor.a.gitman@gmail.com
File Name: open_seq2seq/encoders/resnet_encoder.py
Class Name: ResNetEncoder
Method Name: _encode