9885acac4edf3034b1b6e2335c61dd80d7abe8f9,pynets/utils.py,,collect_pandas_df_make,#Any#Any#Any#Any#,174
Before Change
means.append(np.nanmean(valsB))
else:
means.append(np.nan)
df_concatted_weight_means = pd.DataFrame(means).transpose()
df_concatted_weight_means.columns = [str(col) + "_mean" for col in measures]
df_concatted_std.columns = [str(col) + "_std_dev" for col in df_concatted_std.columns]
result = pd.concat([df_concatted, df_concatted_std, df_concatted_weight_means], axis=1)
df_concatted_final = result.reindex(sorted(result.columns), axis=1)
After Change
if rand_forest is True:
df_rnd_forest = random_forest_ensemble(df_concat.loc[:, measures])
if network:
net_pick_out_path = "%s%s%s%s%s%s%s%s" % (subject_path, "/", str(ID), "_", name_of_network_pickle, "_", network, "_rand_forest")
else:
net_pick_out_path = "%s%s%s%s%s%s" % (subject_path, "/", str(ID), "_", name_of_network_pickle, "_rand_forest")
df_rnd_forest.to_pickle(net_pick_out_path)
df_rnd_forest.to_csv(net_pick_out_path + ".csv", index=False)
except RuntimeWarning:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: dPys/PyNets
Commit Name: 9885acac4edf3034b1b6e2335c61dd80d7abe8f9
Time: 2018-11-06
Author: dpisner@utexas.edu
File Name: pynets/utils.py
Class Name:
Method Name: collect_pandas_df_make
Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 158258ee583740b1fd142b04371bc4ab0712cdce
Time: 2019-11-17
Author: g.lemaitre58@gmail.com
File Name: imblearn/utils/estimator_checks.py
Class Name:
Method Name: check_samplers_pandas
Project Name: QUANTAXIS/QUANTAXIS
Commit Name: b190cebc48af54e21fd01e6897980c26634f1a8b
Time: 2017-09-01
Author: yutiansut@qq.com
File Name: QUANTAXIS/QAFetch/QATdx.py
Class Name:
Method Name: QA_fetch_get_index_min