e822a02daa1cd1c42f6d2bf309d5996a21979ef1,qucumber/quantum_reconstruction.py,QuantumReconstruction,fit,#QuantumReconstruction#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,114

Before Change


                
                
                vector_to_grads(all_grads[0],self.nn_state.rbm_am.parameters())
                vector_to_grads(all_grads[1],self.nn_state.rbm_ph.parameters())
                // assign all available gradients to the corresponding parameter
                //for net in self.nn_state.networks:
                

After Change


            //                             self.nn_state.rbm_am.hidden_bias],lr=lr)
            batch_bases = None
        callbacks.on_train_start(self)
        t0 = time.time()
        batch_num = m.ceil(train_samples.shape[0] / pos_batch_size)
        for ep in progress_bar(range(1,epochs+1), desc="Epochs ",
                               disable=disable_progbar):

            random_permutation      = torch.randperm(train_samples.shape[0])
            shuffled_samples        = train_samples[random_permutation]
            // List of all the batches for positive phase.
            pos_batches = [shuffled_samples[batch_start:(batch_start + pos_batch_size)]
                           for batch_start in range(0, len(train_samples), pos_batch_size)]

            if input_bases is not None:
                shuffled_bases = input_bases[random_permutation]
                pos_batches_bases = [shuffled_bases[batch_start:(batch_start + pos_batch_size)]
                           for batch_start in range(0, len(train_samples), pos_batch_size)]
             
            
            // DATALOADER
            //pos_batches = DataLoader(train_samples, batch_size=pos_batch_size,
            //                         shuffle=shf)
            //multiplier = int((neg_batch_size / pos_batch_size) + 0.5)
            // 
            //neg_batches = [DataLoader(train_samples, batch_size=neg_batch_size,
            //                          shuffle=True)
            //               for i in range(multiplier)]
            //neg_batches = chain(*neg_batches)
            callbacks.on_epoch_start(self, ep)

            if self.stop_training:  // check for stop_training signal
                break
            
            //for batch_num, (pos_batch,neg_batch) in enumerate(zip(pos_batches,
            //                                                   neg_batches)):
            for b in range(batch_num):
                callbacks.on_batch_start(self, ep, b)
                //if input_bases is not None:
                //    pos_batch_bases = input_bases[batch_num*pos_batch_size:(batch_num+1)*;pos_batch_size]

                if input_bases is None:
                    random_permutation      = torch.randperm(train_samples.shape[0])
                    neg_batch        = train_samples[random_permutation][0:neg_batch_size]
                
                //neg_batches = [shuffled_samples[batch_start:(batch_start + neg_batch_size)]
                //           for batch_start in range(0, len(train_samples), neg_batch_size)]

                //if input_bases is not None:
                else:
                    random_permutation      = torch.randperm(z_samples.shape[0])
                    neg_batch = z_samples[random_permutation][0:neg_batch_size]
                    batch_bases = pos_batches_bases[b]
                self.nn_state.set_visible_layer(neg_batch)
                all_grads = self.compute_batch_gradients(k, pos_batches[b],batch_bases)
                optimizer.zero_grad()  // clear any cached gradients
                
                
                for p,net in enumerate(self.nn_state.networks):
                    rbm = getattr(self.nn_state,net)
                    vector_to_grads(all_grads[p],rbm.parameters())
                //vector_to_grads(all_grads[0],self.nn_state.rbm_am.parameters())
                //vector_to_grads(all_grads[1],self.nn_state.rbm_ph.parameters())
                // assign all available gradients to the corresponding parameter
                //for net in self.nn_state.networks:
                
                //for net in self.nn_state.networks:
                //    rbm = getattr(self.nn_state, net)
                //    for param in all_grads[net].keys():
                //        getattr(rbm, param).grad = all_grads[net][param]
                optimizer.step()  // tell the optimizer to apply the gradients

                callbacks.on_batch_end(self, ep, b)
            if observer is not None:
                if ((ep % observer.frequency) == 0): 
                    //if target_psi is not None:
                    stat = observer.scan(ep,self.nn_state)

            callbacks.on_epoch_end(self, ep)
        //F = self.fidelity(target_psi,vis)
        //print(F.item())
        //callbacks.on_train_end(self)
        t1 = time.time()
        print("\nElapsed time = %.2f" %(t1-t0)) 


def vector_to_grads(vec, parameters):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: PIQuIL/QuCumber
Commit Name: e822a02daa1cd1c42f6d2bf309d5996a21979ef1
Time: 2018-07-31
Author: gtorlai@uwaterloo.ca
File Name: qucumber/quantum_reconstruction.py
Class Name: QuantumReconstruction
Method Name: fit


Project Name: PIQuIL/QuCumber
Commit Name: e822a02daa1cd1c42f6d2bf309d5996a21979ef1
Time: 2018-07-31
Author: gtorlai@uwaterloo.ca
File Name: qucumber/quantum_reconstruction.py
Class Name: QuantumReconstruction
Method Name: fit


Project Name: KaiyangZhou/deep-person-reid
Commit Name: b88d36cd9c8056e15607a40f5d10a9072ab84b22
Time: 2018-07-06
Author: k.zhou@qmul.ac.uk
File Name: train_vidreid_xent.py
Class Name:
Method Name: main


Project Name: KaiyangZhou/deep-person-reid
Commit Name: b88d36cd9c8056e15607a40f5d10a9072ab84b22
Time: 2018-07-06
Author: k.zhou@qmul.ac.uk
File Name: train_imgreid_xent.py
Class Name:
Method Name: main