d8f8ac953bc290739aa32a0ad277d53820d4473a,pyprob/modules.py,ProposalUniformDiscrete,loss,#ProposalUniformDiscrete#Any#Any#,77
Before Change
for b in range (batch_size) :
value = samples[b].value[0 ]
min = samples[b].distribution.prior_min
l -= log_weights[b, int (value) - min]
return l
class ProposalNormal (nn.Module) :
After Change
log_weights = torch.log(proposal_output + util.epsilon)
l = 0
for b in range (batch_size) :
value = Variable(samples[b].value, requires_grad=False)
l -= torch.sum(log_weights[b] * value)
return l
class ProposalNormal (nn.Module) :
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: pyprob/pyprob
Commit Name: d8f8ac953bc290739aa32a0ad277d53820d4473a
Time: 2017-08-05
Author: atilimgunes.baydin@gmail.com
File Name: pyprob/modules.py
Class Name: ProposalUniformDiscrete
Method Name: loss
Project Name: silvandeleemput/memcnn
Commit Name: 98e790696877d8065842d83f1819ae9c989a8c98
Time: 2018-06-06
Author: sil.vandeleemput@radboudumc.nl
File Name: memcnn/models/revop.py
Class Name: ReversibleBlockFunction
Method Name: backward
Project Name: vinhkhuc/PyTorch-Mini-Tutorials
Commit Name: 713df9556d874cf9ede91563fccb746b8c54c35f
Time: 2017-05-24
Author: knvinh@gmail.com
File Name: 6_lstm.py
Class Name:
Method Name: predict