fa7ee697076d2061faeaf7ebf20cdcd5da352eae,tests/application_driver_test.py,ApplicationDriverTest,test_multi_device_multi_optimiser_gradients,#ApplicationDriverTest#,193

Before Change


                self.assertGreater(np.sum(np.abs(g_1 - g_2)), 0.0, msg)
                self.assertGreater(np.sum(np.abs(g_1 - g_3)), 0.0, msg)
                self.assertGreater(np.sum(np.abs(g_2 - g_3)), 0.0, msg)
                g_array = np.concatenate([g_0.reshape((1, -1)),
                                          g_1.reshape((1, -1)),
                                          g_2.reshape((1, -1)),
                                          g_3.reshape((1, -1))], axis=0)
                g_ave = g_ave.reshape(-1)
                g_np_ave = np.mean(g_array, axis=0)
                self.assertAllClose(g_np_ave, g_ave)
            SESS_FINISHED.send(test_driver.app, itermsg=None)
            test_driver.app.stop()

After Change


                ])

                // query sample discriminator gradient to check
                gen_0, gen_1, gen_2, gen_3, gen_ave = sess.run([
                    tf.get_default_graph().get_tensor_by_name(
                        "worker_0/ComputeGradients/gradients_1/worker_0/tinynet/G/conv/conv_/conv/ExpandDims_1_grad/Reshape:0"),
                    tf.get_default_graph().get_tensor_by_name(
                        "worker_1/ComputeGradients/gradients_1/worker_1/tinynet/G/conv/conv_/conv/ExpandDims_1_grad/Reshape:0"),
                    tf.get_default_graph().get_tensor_by_name(
                        "worker_2/ComputeGradients/gradients_1/worker_2/tinynet/G/conv/conv_/conv/ExpandDims_1_grad/Reshape:0"),
                    tf.get_default_graph().get_tensor_by_name(
                        "worker_3/ComputeGradients/gradients_1/worker_3/tinynet/G/conv/conv_/conv/ExpandDims_1_grad/Reshape:0"),
                    tf.get_default_graph().get_tensor_by_name(
                        "ApplyGradients_1/AveOverDevices_8:0")
                ])
                self.check_gradients(gen_0, gen_1, gen_2, gen_3, gen_ave)
                self.check_gradients(dis_0, dis_1, dis_2, dis_3, dis_ave)
            SESS_FINISHED.send(test_driver.app, itermsg=None)
            test_driver.app.stop()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 8

Non-data size: 5

Instances


Project Name: NifTK/NiftyNet
Commit Name: fa7ee697076d2061faeaf7ebf20cdcd5da352eae
Time: 2018-10-30
Author: elias.tappeiner@umit.at
File Name: tests/application_driver_test.py
Class Name: ApplicationDriverTest
Method Name: test_multi_device_multi_optimiser_gradients


Project Name: p2irc/deepplantphenomics
Commit Name: 204d1940a9306ae128a4eca6ac9334f9c2f24149
Time: 2019-09-27
Author: dbl599@mail.usask.ca
File Name: deepplantphenomics/semantic_segmentation_model.py
Class Name: SemanticSegmentationModel
Method Name: compute_full_test_accuracy


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7b7bec2918865179e523a315e9291dbafaf8c5f6
Time: 2017-04-10
Author: carlo.deramo@gmail.com
File Name: PyPi/algorithms/td.py
Class Name: TD
Method Name: fit


Project Name: chainer/chainercv
Commit Name: 4e25beb116336c4c7c1462b752f38937cae1a2db
Time: 2017-05-13
Author: yuyuniitani@gmail.com
File Name: tests/links_tests/model_tests/faster_rcnn_tests/test_faster_rcnn.py
Class Name: DummyRegionProposalNetwork
Method Name: __call__


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7b7bec2918865179e523a315e9291dbafaf8c5f6
Time: 2017-04-10
Author: carlo.deramo@gmail.com
File Name: PyPi/algorithms/batch_td.py
Class Name: FQI
Method Name: partial_fit


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7b7bec2918865179e523a315e9291dbafaf8c5f6
Time: 2017-04-10
Author: carlo.deramo@gmail.com
File Name: PyPi/algorithms/td.py
Class Name: SARSA
Method Name: _next_q


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7b7bec2918865179e523a315e9291dbafaf8c5f6
Time: 2017-04-10
Author: carlo.deramo@gmail.com
File Name: PyPi/algorithms/td.py
Class Name: QLearning
Method Name: _next_q


Project Name: eriklindernoren/Keras-GAN
Commit Name: 744353138995f1b15933be6ee2d39f7b83ee1b1f
Time: 2017-07-16
Author: eriklindernoren@live.se
File Name: sgan.py
Class Name: SGAN
Method Name: train